(HPCWire) An Army project devised a novel approach for quantum error correction that could provide a key step toward practical quantum computers, sensors and distributed quantum information that would enable the military to potentially solve previously intractable problems or deploy sensors with higher magnetic and electric field sensitivities. The approach, developed by researchers at Massachusetts Institute of Technology with Army funding, could mitigate certain types of the random fluctuations, or noise, that are a longstanding barrier to quantum computing. These random fluctuations can eradicate the data stored in such devices.
The research involves identifying the kinds of noise that are the most likely, rather than casting a broad net to try to catch all possible sources of disturbance. “The team learned that we can reduce the overhead for certain types of error correction on small scale quantum systems,” said Dr. Sara Gamble, program manager for the Army Research Office, an element of U.S. Army Combat Capabilities Development Command’s Army Research Laboratory. “This has the potential to enable increased capabilities in targeted quantum information science applications for the DOD.”