Building a Quantum Network Using Tiny Nanoscale Nodes
(SciTechDaily) New research at the University of Rochester and Cornell University demonstrates a way to use quantum properties of light to transmit information, a key step on the path to the next generation of computing and communications systems.
Those researchers have taken an important step toward developing a communications network that exchanges information across long distances by using photons, mass-less measures of light that are key elements of quantum computing and quantum communications systems.
The research team has designed a nanoscale node made out of magnetic and semiconducting materials that could interact with other nodes, using laser light to emit and accept photons.
The development of such a quantum network—designed to take advantage of the physical properties of light and matter characterized by quantum mechanics—promises faster, more efficient ways to communicate, compute, and detect objects and materials as compared to networks currently used for computing and communications.
“This is the beginnings of having a kind of register, if you like, where different spatial locations can store information and interact with photons,” says Nick Vamivakas, professor of quantum optics and quantum physics at Rochester.