(ScienceDaily) UC chemistry professor and department head Thomas Beck and UC graduate student Andrew Eisenhart ran quantum simulations to understand glycerol carbonate, a compound used in biodiesel and as a common solvent.
They found that the simulation provided detail about hydrogen bonding in determining the structural and dynamic properties of the liquid that was missing from classical models.
Glycerol carbonate could be a more environmentally friendly chemical solvent for things like batteries. But chemists have to know more about what’s going on in these solutions. They studied the compounds potassium fluoride and potassium chloride.
For the quantum simulation, the chemists turned to UC’s Advanced Research Computing Center and the Ohio Supercomputer Center. Quantum simulations provide a tool to help chemists better understand interactions on an atomic scale.
“Quantum simulations have been around for quite a while,” Eisenhart said. “But the hardware that’s been evolving recently — things like graphics processing units and their acceleration when applied to these problems — creates the ability to study larger systems than we could in the past.”
Every lithium ion battery contains a solvent. Finding a better one could improve energy storage and efficiency.
“The world is moving in a sustainability direction. It’s pretty clear that wind and solar will be two major contributors along with other green energy,” Beck said. “But the energy generated is intermittent. So you need methods for large-scale energy storage so that if it’s cloudy for two days, a city can stay running.”