888-384-7144 info@insidequantumtechnology.com

Light Used to Detect Quantum Info Stored in 100,000 Nuclear Quantum Bits

By IQT News posted 17 Feb 2021

(HPCWire) Researchers have found a way to use light and a single electron to communicate with a cloud of quantum bits and sense their behaviour, making it possible to detect a single quantum bit in a dense cloud.
The researchers, from the University of Cambridge, were able to inject a ‘needle’ of highly fragile quantum information in a ‘haystack’ of 100,000 nuclei. Using lasers to control an electron, the researchers could then use that electron to control the behaviour of the haystack, making it easier to find the needle. They were able to detect the ‘needle’ with a precision of 1.9 parts per million: high enough to detect a single quantum bit in this large ensemble.
The technique makes it possible to send highly fragile quantum information optically to a nuclear system for storage, and to verify its imprint with minimal disturbance, an important step in the development of a quantum internet based on quantum light sources.
The cloud of quantum bits contained in a quantum dot don’t normally act in a collective state, making it a challenge to get information in or out of them. However, Atatüre and his colleagues showed in 2019 that when cooled to ultra-low temperatures also using light, these nuclei can be made to do ‘quantum dances’ in unison.
Now, they have shown another fundamental step towards storing and retrieving quantum information in the nuclei. By controlling the collective state of the 100,000 nuclei, they were able to detect the existence of the quantum information as a ‘flipped quantum bit’ at an ultra-high precision of 1.9 parts per million: enough to see a single bit flip in the cloud of nuclei.
“Technically this is extremely demanding,” said Atatüre, who is also a Fellow of St John’s College. “We don’t have a way of ‘talking’ to the cloud and the cloud doesn’t have a way of talking to us. But what we can talk to is an electron.”

Subscribe to Our Email Newsletter

Stay up-to-date on all the latest news from the Quantum Technology industry and receive information and offers from third party vendors.

0