New Method Developed to Measure Photocurrents Has Implications for Developing Quantum Sensors and Next-Generation Electronics
(Phys.org) Researchers at the University of Chicago and the U.S. Department of Energy’s Argonne National Laboratory have developed a new method to measure how photocurrents flow in a 2-D material—a result that could have implications for developing quantum sensors and next-generation electronics.
“The ability to observe electronic behavior that is invisible to traditional measurements opens new avenues for scientific study, and ultimately helps us design efficient quantum technologies,” said principal investigator David Awschalom, Liew Family Professor of Molecular Engineering, senior scientist at Argonne National Laboratory, and director of the Chicago Quantum Exchange. “This sensitive measurement technique allows us to explore phenomena at the atomic scale and develop new devices for quantum sensing and communication.”