(IEEE.Spectrum) Unpredictability makes it a crucial ingredient in the encryption that protects billions of dollars worth of private data. Random numbers are used to make cryptographic keys, and any latent pattern in the key can be used to crack encryption. True randomness is harder to come by than you might think though, which is why people are increasingly turning to the strange world of quantum mechanics to find it.
Chinese tech giant Alibaba recently published research on a quantum random number generator (QRNG) platform that it has been using to enhance the security of its cloud as well as financial services like Alipay and Ant Financial. And in April, Samsung released the Galaxy Quantum 2 – the second generation of its new line of smartphones secured using a specialized QRNG chip.
Others may soon follow in their footsteps, says Axel Foery, an executive at Swiss company ID Quantique, which supplies QRNG chips used by both Alibaba and Samsung. He says they are in discussions with a number of major cloud-providers and leading smartphone makers and he thinks the use of quantum randomness could soon be standard practice.
most encryption today relies on pseudo-random number generators, which use algorithms to produce numbers with statistical properties close to random. But any “random” number generated by a mathematical process is inherently deterministic, says Foery, and if you can crack how it works you can predict any security key it produces.
Quantum processes on the other hand are inherently probabilistic. Even with perfect information its impossible to predict their outcome exactly.
Whether your average smartphone user needs the extra security provided by a QRNG is debatable. But Juan Carlos García Escartín, an associate professor at the Universidad de Valladolid in Spain who studies quantum information, says the fact they are now making it into consumer products is a promising sign the technology is breaking out of niche applications. “I wouldn’t have expected a few years ago that something you can buy in a store will have a QRNG inside,” he said.
Roger Colbeck, a professor at the University of York in the UK who studies quantum information. integrating QRNGs into users individual devices may be a more secure approach. But given the still considerable cost, how many manufacturers are ready to do away with conventional random number generators remains to be seen. “But if manufacturers really get into competition, there’s a real drive towards miniaturization and costs get reduced I don’t see why in 10 years time every computer you buy couldn’t have a little QRNG inside.”