The future of scientific research is quantum
(NextWeb) Quatum technology has moved beyond specialized research labs, becoming accessible to more users. The Q4Q team aims to build on previous advances in quantum computing– using user-friendly quantum algorithms and software packages to realize quantum simulations of physical systems. Where the deeply complex properties of these systems are incredibly difficult to recreate within conventional computers, there is now hope that this could be achieved using large systems of qubits. IQT-ews summarizes a recent article by the Q4Q team, consisting of lead investigator Rosa Di Felice, Anna Krylov, Marco Fornari, Marco Buongiorno Nardelli, Itay Hen and Amir Kalev, in Scientia.
Over the past few years, the capabilities of quantum computers have reached the stage where they can be used to pursue research with widespread technological impact. Through their research, the Q4Q team at the University of Southern California, University of North Texas, and Central Michigan University, explores how software and algorithms designed for the latest quantum computing technologies can be adapted to suit the needs of applied sciences. In a collaborative project, the Q4Q team sets out a roadmap for bringing accessible, user-friendly quantum computing into fields ranging from materials science, to pharmaceutical drug development.
To recreate the technologies that could realistically become widely available in the near future, the Q4Qteam’s experiments will incorporate ‘noisy intermediate-scale quantum’ (NISQ) devices – which contain relatively large numbers of qubits, and by themselves are prone to environmental errors.
In their projects, the Q4Q team identifies three particular aspects of molecules and solid materials that could be better explored through the techniques they aim to develop. The first of these concerns the ‘band structures’ of solids – which describe the range of energy levels that electrons can occupy within a solid, as well as the energies they are forbidden from possessing.
Secondly, they aim to describe the vibrations and electronic properties of individual molecules – each of which can heavily influence their physical properties. Finally, the researchers will explore how certain aspects of quantum annealing can be exploited to realize machine-learning algorithms – which automatically improve through their experience of processing data.
Elsewhere, the Q4Q team will account for the often deeply complex quantum properties of individual molecules made up of large groups of atoms. During chemical reactions, any changes taking place within these molecules will be strongly driven by quantum processes, which are still poorly understood. By developing plugins to existing quantum software, the team hopes to accurately recreate this quantum chemistry in simulated reactions.
If they are successful in reaching these goals, the results of their work could open up many new avenues of research within a diverse array of fields – especially where the effects of quantum mechanics have not yet been widely considered. In particular, they will also contribute to identifying bottlenecks of current quantum processing units, which will aid the design of better quantum computers.
Perhaps most generally, the Q4Q team hopes that their techniques will enable researchers to better understand how matter responds to external perturbations, such as lasers and other light sources.
Elsewhere, widely accessible quantum software could become immensely useful in the design of new pharmaceutical drugs, as well as new fertilizers. By ascertaining how reactions between organic and biological molecules unfold within simulations, researchers could engineer molecular structures that are specifically tailored to treating certain medical conditions.
The ability to simulate these reactions could also lead to new advances in the field of biology as a whole, where processes involving large, deeply complex molecules including proteins and nucleic acids are critical to the function of every living organism.
If the impacts of the team’s proposed research goals are as transformative as they hope, researchers in many different fields of the technological endeavor could soon be working with quantum technologies.
Such a clear shift away from traditional research practices could in turn create many new jobs – with required skillsets including the use of cutting-edge quantum software and algorithms. Therefore, a key element of the team’s activity is to develop new strategies for training future generations of researchers. Members of the Q4Q team believe that this will present some of the clearest routes yet towards the widespread application of quantum computing in our everyday lives.